

Abstract

he coupling of a proton and a hydride to form H_2 in the active sites of either [FeFe]- or [NiFe]-hydrogenase, is assisted by an intramolecular base as the proton shuttle. Our synthetic model, [M(N₂S₂)Fe(CO)Cp] ⁺ (M = Ni or Fe(NO)), though it lacks an apparent base, may dissociate its S-Fe' bond (Hemi-lability) to create a Lewis pair and act as an electrocatalyst for H₂ production. After two protonations and two/three reductions, the proton on S and the hydride on Fe' are propitiously orientated and their spatial proximity facilitates the subsequent coupling. Such a coupling reaction and its barrier are dependent on the oxidation states and may occur by either a [ECEC] or an E[CECE] mechanism.

Introduction: Proton Shuttles in Hydrogenase

[NiFe]-Hydrogenase Cysteine residue

Cys NC OC

> [FeFe]-Hydrogenase Pendant amine

Synthesis and Crystal Structure

Fe-Fe'⁺ (1935, 1717 cm⁻¹) **Fe-Fe''**⁺ (2045, 2002, 1691 cm⁻¹) **Ni-Fe''**⁺ (2044, 1999 cm⁻¹) **Ni-Fe'**⁺ (1930 cm⁻¹)

Full publication: *JACS*, **2016**, *138*, 12920. References: Liu et al. Angew. Chem., 2014, 53, 21. Ogata et al. *Nature*, **2015**, *520*, 571.

Michael B. Hall,* and Marcetta Y. Darensbourg*

′′**CO** ĊN Fe-Fe' Ni-Fe'⁺ Ni-Fe"⁺

